En el área de la geometría existen diferentes e importantes aplicaciones y una de ellas es la mediatriz, la cual es utilizada para poder hacer una determinación del circuncentro de los polígonos cíclicos, esto porque por definición, la recta que pasa por el punto medio de un segmento que está ubicado dentro de la circunferencia inscrita en el polígono necesariamente pasará por su centro. Cuando nos referimos a una circunferencia, cualquier mediatriz de una cuerda que pertenezca a esta pasará por su centro. La mediatriz es uno de los objetos geométricos más importantes en otras construcciones más complejas.
Temas relacionados
En geometría, conocemos con el nombre de mediatriz de un segmento a la recta que tiene como función la de cortar a un segmento de forma perpendicular por su punto medio.
La mediatriz de un segmento es la recta perpendicular a ese segmento que pasa por su punto medio. Cuando tenemos un segmento AB, la mediatriz de ese segmento es una recta de forma perpendicular que pasa por el medio.
Conocemos con el nombre de mediatriz, en el área de la geometría, a la recta que es dibujada desde un punto medio de un segmento y que además cumple con la condición de perpendicularidad con respecto a ella. Su efecto principal incurre en que los dos lados que genera el segmento son completamente proporcionados con respecto al punto medio donde se traza la mediatriz.
Si lo vemos desde el punto de vista analítico, la mediatriz se puede describir como una recta en la cual sus puntos que la conforman se encuentran equidistantes a los extremos del segmento, es importante señalar que la mediatriz la poseen solo segmentos por lo que no puede ser aplicada a conceptos infinitos no definidos.
Las características más sobresalientes que tiene una mediatriz son las siguientes:
Al igual que muchos temas dentro del área de la geometría, la mediatriz tiene propiedades que mencionamos a continuación:
Para lograr trazar la mediatriz, debemos de seguir una serie de pasos importantes que son los siguientes:
La mediatriz únicamente se puede aplicar los extremos de los segmentos y no a los ángulos.
Conocemos como la mediatriz de un triángulo a la mediatriz que se encuentra asociada a uno de sus lados, esto quiere decir, la recta perpendicular a dicho lado que pasa por el punto medio o por el centro de éste. En el triángulo podemos encontrar tres mediatrices en un triángulo, que son Ma, Mb y Mc, dependiendo del lado del triángulo al que se refieren (a, b o c).
Las tres mediatrices que podemos encontrar en un triángulo coinciden en un punto que es conocido con el nombre de circuncentro. Este circuncentro es entonces el centro de la circunferencia circunscrita en el triángulo, ya que equidista de sus tres vértices.
La mediatriz de un segmento es la línea recta perpendicular a dicho segmento que ha sido trazada por su punto medio y que lo divide en dos partes completamente iguales. Podríamos decir también que es el lugar geométrico o la recta, cuyos puntos son equidistantes a los extremos del segmento.
Algunos ejemplos de la mediatriz son los siguientes:
Briceño V., Gabriela. (2018). Mediatriz. Recuperado el 25 febrero, 2024, de Euston96: https://www.euston96.com/mediatriz/